• OPEN ACCESS

Tumor-associated Exosomes Are Involved in Hepatocellular Carcinoma Tumorigenesis, Diagnosis, and Treatment

  • Hang Wang1,2 ,
  • Liang Yu1,2,3 ,
  • Peng Huang1,2 ,
  • Yongxu Zhou1,2 ,
  • Wangyang Zheng1,2 ,
  • Nanfeng Meng1,2 ,
  • Risheng He1 ,
  • Yi Xu1,2,3,* ,
  • Tey Sze Keong3,*  and
  • Yunfu Cui1,* 
 Author information
Journal of Clinical and Translational Hepatology 2022;10(3):496-508

DOI: 10.14218/JCTH.2021.00425

Abstract

Hepatocellular carcinoma (HCC) has become a challenging disease worldwide. There are still limitations in the diagnosis and treatment of HCC, and its high metastatic capacity and high recurrence rate are the main reasons for its poor prognosis. The ability of extracellular vesicles (EVs) to transfer functionally-active substances and their widespread presence in almost all body fluids suggest their unprecedented potential in the study of various cancers. The unique physicochemical properties of EVs determine their potential as antitumor vaccines and drug carriers. In the last decade, the study of EVs in HCC has evolved from a single hot topic to a system with considerable scale. This paper summarizes the role of EVs, especially exosomes, in the occurrence, metastasis and tumor immunity of HCC, reviews their applications in tumor diagnosis, prognosis and treatment, describes the pros and cons of these studies, and looks forward towards the future research directions of EVs in HCC.

Keywords

Extracellular vesicles, Exosome, Hepatocellular carcinoma, Tumor formation and progression

Introduction

Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world and the third leading cause of cancer death worldwide, with 840,000 new cases and at least 780,000 deaths each year. Due to the insidious onset of HCC and the limited effectiveness of current treatments, the prognosis of HCC is unsatisfactory.1 Because the sensitivity and specificity of the classic blood diagnostic marker alpha-fetoprotein (AFP) are not satisfactory, new diagnostic markers have been proposed for the early diagnosis of liver cancer in recent decades.2 Despite the limited benefit, hepatic resection, liver transplantation or the application of chemotherapy for unresectable HCC remain the main options to treat HCC. Moreover, surgical resection is more suitable for patients with isolated tumors, and limitations and drawbacks emerge when the number of tumors is high.3 According to a recently published cancer statistics report, the survival rate of most common cancers has improved to some extent over the past four decades, but the prognosis of liver cancer is still poor. Due to its high metastatic capacity and recurrence rate, the 5-year survival rate has reached only 18%.4 Therefore, there is an urgent need to identify effective, noninvasive, and specific biomarkers that can provide early identification of HCC. In addition, there is an urgent need to explore more biological therapies to provide new ideas for the diagnosis and treatment of HCC that will allow us to better understand disease progression and find better approaches to treat HCC.

Exosomes first came to researchers' attention in 1983, when it was discovered that reticulocyte-releasing exosomes could carry transferrin receptors into the extracellular space.5 In the last 30 years, exosomes have gone from being initially thought of as a process by which cells dispose of waste products to being considered a new mechanism of intercellular communication, changing our view of the molecular mechanisms of intercellular exchange and disease progression. In recent years, the concept of exosomes has been further expanded. Many vesicles with similar functions and properties secreted by cells (including exosomes, microvesicles and apoptotic vesicles, etc.) are collectively referred to as extracellular vesicles (EVs). The increasing interest in the ability of EVs to alter the local and distant microenvironments during HCC progression has led to new perspectives on intercellular communication involving various biological functions and disease progression, thus enabling us to effectively address the ensuing clinical challenges.

Overview of exosomes

Exosomes are a class of EVs that are released by almost all human cells.6 Humans circulate quadrillions of exosomes at all times. We can isolate exosomes from biological fluids, including plasma,7 saliva,8 urine,9 and ascites.10 The structure of exosomes was first described by Johnstone et al.11 in 1989. Exosomes are disk- or cup-shaped, membrane-structured vesicles with a diameter of approximately 30–150 nm and having an electron microscopic density of 1.10–1.21 g/mL.12 EVs include exosomes, microvesicles and apoptotic vesicles, and exosomes are the most widely studied among them. There are many substances that can be carried inside the exosome: proteins, lipids, nucleic acids, and inorganic salt ions.

Exosomes were first identified in 1983 in the supernatant of sheep erythrocytes cultured in vitro.5 Initially, exosomes were thought to be excess membrane proteins released during cell maturation to regulate membrane function and to serve as organelles for the removal of cellular debris and the elimination of cell surface molecules. In 1996, Raposo et al.13 discovered that exosomes secreted by B lymphocytes could present antigens to activate T lymphocytes, and since then, scientists have continued to recognize the function of exosomes.

The production, screening, secretion, release, and uptake of exosomes are regulated by specific signaling pathways.14 Functionally, exosomes are considered key players in different biological processes in both physiological and pathological contexts. In recent years, an increasing number of studies have found that exosomes play a critical role in the regulation of tumor cell signaling pathways, early tumor molecular markers, prognostic factors, etc., and may even serve as carriers of genes and drugs.15 These findings have provided new ideas and directions for the diagnosis and treatment of malignant tumors such as liver cancer.

The formation and secretion of exosomes involves several stages. (1) The cell membrane invaginates to form endocytic vesicles, and multiple endocytic vesicles fuse with each other to form early endosomes. (2) Early endosomes invaginate again and encapsulate intracellular material to form multiple intraluminal vesicles, which are further transformed into late endosomes or multivesicular bodies (MVBs). (3) After specific signaling pathway screening, MVBs either fuse with the cell membrane, releasing intraluminal vesicles into the extracellular space to form exosomes, or fuse with lysosomes, leading to digestion and degradation of contents in MVBs.16,17

Exosomes of different origins preferentially interact with specific types of receptor cells, resulting in exosomes of different tumor cell origins that can specifically accumulate in organs or tissues.18 Exosomes are taken up by recipient cells in several ways. 1. Exosomes can recognize and remain on the surface of the recipient cell membrane and deliver specific signals.19 2. Exosomes enter recipient cells through endocytosis, phagocytosis and pinocytosis and bind to the endoplasmic reticulum or nuclear membrane to deliver informative material and perform important biological functions.20,21 3. Exosomes fuse with the plasma membrane of recipient cells and release their contents released directly into the cytoplasmic lysate. The mechanisms of exosome formation, secretion and uptake are described in Figure 1.

Schematic diagram of the main mechanisms of exosome production, secretion and uptake.
Fig. 1  Schematic diagram of the main mechanisms of exosome production, secretion and uptake.

(A) Exosome formation. Endocytosis wraps material to form early endosomes; early endosomes continue to mature to form late endosomes; endosomal plasma membrane buds inward to form MVBs; sorting and intracellular transport of exosomes depend on the classical ESCRT-dependent pathway or ESCRT-independent pathway; MVB either binds to lysosomes to digest their contents of exosomes or binds to cells to release their contents of exosomes. (B) Major components and inclusions of exosomes. (C) Binding and uptake of exosomes. Exosomes recognize and bind to receptor cells to deliver specific signals by membrane surface binding or membrane fusion; exosomes enter target cells via macropinocytosis or phagocytosis pathways; and exosomes enter target cells via clathrin-, caveolae-, or lipid raft-mediated endocytosis.

The sorting, intracellular translocation, release, and recognition of bound target cells of exosomal contents are a series of finely-regulated processes that require the involvement of many proteins. First, exosome formation and content sorting involve a series of endosomal sorting complexes required for transport (ESCRT) and Vps4; second, intracellular transport of exosomes involves numerous molecular switches, including RAB GTPase proteins and cytoskeletal proteins. These proteins determine whether the next destination of the MVB fuses with the cell membrane to release extracellular material or is digested by lysosomes.22,23 Third, exosome binding to the target site requires binding recognition of specific proteins involving four tetraspanin proteins (CD9, CD63, CD81, CD151, etc.)24 that are abundantly expressed on the exosome surface. Much of the exosome targeting to specific cell lines is mediated through protein receptors and adhesion molecules (tetraspanin, integrins, proteoglycans and lectins) enriched on the exosome surface.25 Additional proteins that are labeled for use in the detection of exosomes include SNARE, apoptosis-linked gene 2-interacting protein X (also known as Alix), tumor susceptibility gene 101 (also known as TSG101),26 and heat shock proteins (such as HSP90). In addition to a specific protein composition, exosomes also have a specific lipid composition. The exosome membrane is rich in cholesterol, ceramide and sphingomyelin, which are also involved in the formation and secretion of exosomes.27 When we identify exosomes, we usually need to detect at least one positive transmembrane/lipid binding protein (CD9, CD63, CD83 or integrin) and one cytosolic protein recovered in EVs (ALIX, TSG101, syntenin or HSP70) and at least one negative protein (albumin, lipoprotein and ribosomal protein) level.28

The recognition, binding and uptake of exosomes are the basis for the accurate performance of their functions. Systematic analysis of the mechanism of exosome-cellular action will help to identify the function of specific exosomes in physiological and pathological settings and provide a more solid theoretical basis for exosomes as therapeutic targets and diagnostic markers for HCC.

Role of exosomes in HCC

HCC is characterized by dysregulation or dysfunction of multiple signaling pathways that mediate tumor behavior, local spread, and propensity for multifocal tumor growth. Numerous experiments have confirmed that exosomes could represent a contributory mechanism to liver carcinogenesis and promote the metastasis and progression of HCC by regulating the tissue microenvironment and multiple signaling pathways in cancer and normal cells. In addition, exosomes are directly involved in information sharing between tumor cells. Oncogenic molecules from tumor cells at the primary site can be transmitted via exosomes to different tumor cell subtypes in adjacent or even distant organs. In HCC, this mechanism of information sharing among tumor cells can often directly promote cancer cell proliferation or control cell death.

We summarize all studies related to exosomes in the development of HCC in Table 1.29–58 The pattern of HCC-associated exosomes involved in various intercellular molecular interactions in the HCC tumor microenvironment (TME) is shown in Figure 2.

Table 1

Cell biological behavioral changes and signaling pathways mediated by HCC-related exosomes

MolecularTypeSourceRecipient cellType of functionMechanismRef
miR-210miRNAHepatoma cellsEndothelial cellsAngiogenesisInhibit SMAD4 and STAT650
miR-155miRNAHepatoma cellsEndothelial cellsAngiogenesisNot mentioned51
lncRNA-H19lncRNAHepatoma cellsEndothelial cellsAngiogenesisIncrease VEGF and ICAM152
NKG2D, HSP70ProteinHepatoma cellsEndothelial cellsAngiogenesisNot mentioned53
VasorinProteinHepatoma cellsEndothelial cellsAngiogenesisNot mentioned54
CLEC3BProteinHepatoma cellsEndothelial cellsAngiogenesisActivation of AMPK signal pathway55
ANGPT2ProteinHepatoma cellsEndothelial cellsAngiogenesisUp-regulate Akt/eNOS and Akt/ β-catenin pathways56
miR-200b-3pmiRNAHepatoma cellsEndothelial cellsInhibits angiogenesisUpregulate ERG57
CXCR4ProteinHepatoma cellsLymphatic endothelial cellsLymphangiogenesisEnhance the secretions of MMP-9, MMP-2 and VEGF-C58
miR-103miRNAHepatoma cellsEndothelial cellsVascular permeabilityInhibit VE-Cad, p120 and ZO-145
circRNA-100338circRNAHepatoma cellsEndothelial cellsVascular permeabilityDecrease VE-cadherin and ZO-1 expression47
miR-1247-3pmiRNAHepatoma cellsFibroblastCAFsDownregulate B4GALT3 and activate β1-integrin/NF-κB axis48
miR-21miRNAHepatoma cellsFibroblastCAFsDepress PTEN, upregulate PDK1/Akt pathway49
linc-RORlncRNAHepatoma cellsHepatoma cellsAntihypoxiaNeutralize miR-145 and activate linc-RoR–miR145–HIF-1a axis32
NSMase1ProteinHepatoma cellsHepatoma cellsApoptosisDecrease the ratio of sphingomyelin/ceramide35
miR-122miRNAHepatoma cellsHepatoma cellsCell cycle arrestNot mentioned33
miR-320amiRNACAFsHepatoma cellsCell cycle arrestBinding of PBX3 inhibits MAPK pathway activation34
circRNA-0051443circRNAHepatoma cellsHepatoma cellsCell cycle arrest
Apoptosis
UpregulatesBAK1 expression36
circRNA-0004277circRNAHepatoma cellsHepatoma cellsEMTInhibition of ZO-139
circ-MMP2circRNAHepatoma cellsHepatoma cellsEMTSponging miR-136-5p40
miR-32-5pmiRNAHepatoma cellsHepatoma cellsEMT/angiogenesisSuppress PTEN and activate PI3K/Akt pathway41
circ-PTGR1circRNAHepatoma cellsHepatoma cellsMetastasisActivate MET via interacting with miR-449a37
S100A4ProteinHepatoma cellsHepatoma cellsMetastasisActivate STAT344
miR-21miRNAHepatoma cellsHepatoma cellsProliferationSuppress the TETs/PTENp1/PTEN pathway29
lncRNA-FAL1lncRNAHepatoma cellsHepatoma cellsProliferation metastasisSuppress miR-1236 and upregulate ZEB1 and AFP30
GOLM1ProteinHepatoma cellsHepatoma cellsProliferation metastasisActivate GSK-3β/MMPs signaling axis31
p120-cateninproteinHepatoma cellsHepatoma cellsProliferation metastasisInhibit STAT3 signaling38
SMAD3Protein mRNAHepatoma cellsHepatoma cellsPromoted adhesionEnhance TGF-β-SMAD3-ROS signal42
miR-25-5pmiRNAHepatoma cellsHepatoma cellsEnhanced invasive abilityInhibit LRRC7 expression46
LOXL4ProteinHepatoma cellsHepatoma+endothelial cellsPromoted adhesionDown-regulate PTEN and up-regulate Akt/Snail signaling pathway43
Exosome network in the HCC microenvironment.
Fig. 2  Exosome network in the HCC microenvironment.

Cell growth

PTEN is an important oncogene, and its expression is generally decreased in tumors such as HCC. miR-21 downregulates PTENp1 expression by regulating the expression of TETs. Experiments showed that uptake of exosomal miR-21 derived from HCC cells by other HCC cells could significantly affect cell growth and promote HCC cell proliferation.29 The exosomal long non-coding RNA (lncRNA) FAL1 was upregulated in the serum of HCC patients and transferred to HCC cells, which accelerated HCC cell proliferation and metastasis through competitive binding to miR-1236.30 Golgi membrane protein 1 (also known as GOLM1/GP73) is a serum marker for HCC. Uptake of exosomal GOLM1 by HCC cells activates the GSK-3β/MMP signaling pathway, accelerating cell proliferation and promoting the progression of HCC.31 Exosomes produced by HCC cells are transferred to surrounding adipocytes, activating the NF-κB pathway, inducing an inflammatory phenotype in adipocytes, increasing the synthesis of inflammatory mediators (such as IL-6, IL-8), and promoting the proliferation of HCC cells.59 Adipose tissue release of exosomal circRNA targets deubiquitination-associated USP7 in HCC, inhibits miR-34a, promotes HCC proliferation, and stabilizes cellular DNA damage.60

Linc-RoR is a hypoxia-responsive lncRNA, aberrantly expressed in tumor cells. HCC cells deliver exosomal Linc-RoR to neighboring HCC cells under hypoxic conditions to neutralize miR-145 expression, thereby increasing the expression of HIF-1α mRNA. HIF-1a targets PDK1, which regulates mitochondrial function during hypoxia and thus resists hypoxia to allow cancer cell survival.32

Cell death

Some exosomes secreted by HCC cells also inhibit malignant biological behavior. HCC cells secrete specific types of exosomes to reach target cells, where cell death occurs by regulating the cell cycle and activating apoptosis. miR-122 is a micro RNA (miRNA) that can specifically inhibit liver cancer growth. Adipose tissue-derived mesenchymal stem cells (commonly referred to as AMSCs) produce exosomal miR-122, which is transduced into HCC cells and induces cell cycle G0/G1 arrest and apoptosis.61 MiR-122 is released from the exosomes of HCC cells and can be taken up by other HCC cells lacking miR-122, inhibiting HCC growth by suppressing cell cycle progression. Meanwhile, recipient HCC cells also secrete insulin-like growth factor 1 (also known as IGF-1), which counteracts the expression of miR-122 in donor cells to ensure their own proliferation.33 Cancer-associated fibroblasts (CAFs) secrete exosomal miR-320a that metastasizes to HCC, inhibits the activation of the MAPK pathway, and suppresses the cell cycle progression of HCC cells by binding PBX3.34

Neutral sphingomyelinase 1 (also known as NSMase1) is an enzyme that converts sphingomyelin (also known as SM) to ceramide (also known as Cer). Exosomal NSMase1 secreted by HCC cells can reduce the SM/Cer ratio of target cells, induce apoptosis through activation of the caspase-3 signaling pathway, and inhibit the growth of HCC.35 Circ-0051443 upregulates BAK1 expression in HCC cells by competitively binding miR-331-3p, promoting apoptosis and arresting the cell cycle. Therefore, liver cancer exosome circ-0051443 can be used as a predictor and potential therapeutic target for HCC.36

Metastasis capability

In addition to directly promoting tumor volume, more metastatic HCC cells can also confer the ability to migrate and invade through exosomes to those cells with lower or no metastatic potential. CircPTGR1 is an exosomal circRNA specifically expressed in high metastatic potential hepatoma cells (i.e. LM3) and transferred via serum to pairs of nonmetastatic or low metastatic potential hepatoma cells. CircPTGR1 in recipient cells competes with MET (a receptor for hepatocyte growth factor) for targeting miR-449a to enable the migration and invasion of cells.37 P120-Catenin (also known as p120ctn) is a member of the family of armadillo proteins that operate in cell adhesion and signal transduction. Exosome p120ctn secreted by HCC cells can inhibit the metastasis of HCC cells and the expansion of hepatic stem cells (HSCs) by inhibiting STAT3 signaling.38

EMT

Epithelial-mesenchymal transition (EMT) is a cell transformation biological process defined by the loss of epithelial characteristics and acquisition of a mesenchymal phenotype, giving cells the ability to metastasize and invade, and is involved in tumor progression and metastasis.62 The loss of E-cadherin and the increase in vimentin indicate activation of EMT in human cancers, suggesting an association with tumor progression.63 Exosomes circ-0004277 from HCC cells stimulate EMT in peripheral cells via cellular communication to further promote HCC invasion into normal surrounding tissues.39 HCC cells secrete exosomal circ-MMP2 by acting as a molecular sponge for miR-136-5p, thereby promoting the development of EMT and metastasis in adjacent HCC cells.40 In liver cancer cell lines and patient tissues, exosomal miR-32-5p activates the PI3K/activating protein kinase B (Akt) pathway by suppressing PTEN, leading to EMT and angiogenesis.41 As a result, upregulation of miR-32-5p leads to a decrease in E-cadherin and an increase in vimentin, promoting EMT; however, in contrast, upregulation of miR-140-3p reverses EMT in HCC. Vps4A contributes to the sorting of proteins into exosomes. One study found that Vps4A regulates the exosomal sorting of β-catenin, thereby reducing β-catenin signaling and inhibiting EMT and metastasis of HCC.64 Although Vps4A does not act directly on recipient cells, it exerts tumor-suppressive effects by affecting exosomal miRNA production and sorting in hepatoma cells. These findings provide new ideas for investigating the role of exosomes in HCC.

Premetastatic niches

In the more than 100 years since Stephen Paget's "seed and soil" hypothesis was formulated, much progress has been made in deciphering the mechanisms of organ-specific metastasis of tumor cells. Tumor cells secrete molecule-containing exosomes that are transported to specific distal organs and reconfigure their microenvironment upon arrival, achieving increased vascular permeability and adhesion of tumor cells and organ-specific implantation.

HCC cells released exosomes containing SMAD family member 3 (also known as SMAD3) protein and mRNA, activating the TGF-β-SMAD3-reactive oxygen species (ROS) signaling pathway in receptor tumor cells. ROS promote adhesion and distant colonization of CTCs by regulating adhesion molecules.42 The exosomal LOXL4 produced by HCC enables tumor cells to form stable adhesions to the ECM by activating the FAK/Src pathway. These studies provide new evidence for the formation of premetastatic niches in HCC.43 Integrins on tumor exosomes determine the organoleptic nature of metastasis and activate Src phosphorylation and S100 gene expression in receptors to stimulate prosurvival pathways and establish an inflammatory environment. The establishment of an inflammatory environment in specific distant organs contributes to the specific colonization of tumor cells. Exosomal S100A4 was secreted by highly metastatic hepatoma cells, which significantly enhanced the in vitro invasion and in vivo metastasis of hepatoma cells with low metastasis. Exosomal S100A4 upregulates OPN expression through activation of STAT3 phosphorylation.44

Some exosomes make it easier for tumor cells to break through the vascular endothelium by affecting vascular permeability or make it easier for circulating tumor cells (CTCs) to be implanted in distant organs. Therefore, increased vascular permeability is also an important part of the premetastatic niches. Exosomal miRNA-103 secreted by hepatoma cells increases vascular permeability. Mechanistic studies have revealed that miR-103 secreted by hepatoma cells can be delivered to endothelial cells via exosomes, which then attenuate the integrity of the endothelial junction by inhibiting the expression of VE-cadherin (also known as VE-Cad), p120-catenin (also known as p120), and zonula occludens 1 (also known as ZO-1).45 Exosomal miR-25-5p enhances the movement of HCC cells into endothelial cells by inhibiting the expression of leucine-rich repeat-containing protein 7 (also known as LRRC7), a protein associated with cell adhesion and migration. These tumor cells enter the blood circulation and become CTCs. Tumor self-seeding occurs when circulating malignant cells reinfiltrate the original tumor. This process may give rise to more aggressive tumor cells, which may contribute to the progression of cancer.46 HCC cells secrete exosomal circRNA-100338 for delivery to vascular endothelial cells, which decreases VE-cadherin and ZO-1 expression in vascular endothelial cells, thereby disrupting the tight junctions between cells, increasing the permeability of vascular endothelial cells, and promoting hematogenous metastasis of HCC.47

CAFs

Intercellular crosstalk between tumor cells and fibroblasts can be mediated by HCC-derived exosomes. We found that HCC cells can transform normal HSCs into CAFs. CAFs create a suitable “soil” for tumor origination and secrete numerous growth factors promoting tumor growth and angiogenic factors promoting tumor angiogenesis. In addition, CAFs attract numerous inflammatory cytokines and secrete a great number of soluble products promoting tumor cell invasion and metastasis. HCC cells secrete exosomal miR-1247-3p, which directly targets B4GALT3 and leads to activation of β1-integrin-NF-κB signaling in fibroblasts. Activated CAFs further promote the progression of HCC lung metastasis by secreting proinflammatory cytokines, including IL-6 and IL-8.48 Exosomal miRNA-21 secreted by HCC cells directly targets PTEN, resulting in activation of PDK1/Akt signaling in HSCs. Activated CAFs further promote cancer progression by secreting angiogenic cytokines, including VEGF, MMP2, MMP9, bFGF, and TGF-β.49

Angiogenesis

During the progression of tumor development, tumor cells can affect different changes in vascular endothelial cells through the exosomal pathway. This process involves many biological events, such as ECM degradation, vascular endothelial cell proliferation and migration, lumen formation, and increased permeability. With the rapid increase in tumor size and insufficient blood supply to the tumor, cells inside HCC are often in a hypoxic state. Stimulated by the hypoxic emergency, tumor cells promote angiogenesis by secreting exosomes to activate epithelial signaling pathways in response to hypoxic stress.65

Exosomal miR-32-5p is overexpressed in HCC tissues, and targeting endothelial cells to inhibit PTEN expression activates the PI3K/Akt pathway, thereby inducing angiogenesis.41 HCC cell-secreted exosomal miR-210 may be transferred into endothelial cells and thereby promote tumor angiogenesis by inhibiting the expression of SMAD4 and STAT6.50 The secretion of exosomal miR-155 by HCC cells under hypoxic conditions promotes the microvascular formation of human umbilical vein endothelial cells (HUVECs), and exosomal miR-155 may affect angiogenic activity in HCC.51 Exosomal lncRNA H19 released from CD90+ hepatoma cells acts on endothelial cells to upregulate VEGF expression and promote angiogenic phenotypes and intercellular adhesion.52 Exosomal HSP70 and NKG2D produced by HCC cell lines induce endothelial HUVECs to form vascular lumens.53 Vasorin (also known as VASN) is a type I transmembrane protein that plays an important role in tumor development and angiogenesis, and HepG2-derived VASN can be transferred to HUVECs through receptor-mediated exocytosis to promote their proliferation and thus enhance neovascularization.54 The downregulation of CLEC3B in exosomes suppresses VEGF secretion in both HCC cells and ECs and eventually inhibits angiogenesis. Mechanistically, CLEC3B-mediated VEGF expression in tumor cells and ECs depends on the activation of the AMPK signaling pathway.55 The similarly secreted exosomal ANGPT2 by HCC cells can induce vascular endothelial cell proliferation and tumor angiogenesis.56 Transfer of exosomal miR-200b-3p from hepatocytes to vascular endothelial cells inhibits the expression of erythroblast transformation-specific related genes and reduces tumor angiogenesis. The expression of miR-200b-3p and secretion of exosomal miR-200b-3p are usually downregulated in HCC tissues, and studies on miR-200b-3p may be a new target against tumor angiogenesis.57

In addition to angiogenesis, some studies have found that exosomes can also promote lymphatic tract proliferation, making liver cancer cells more susceptible to lymphatic pathway metastasis. Exosomal CXCR4 from HCC cells increased the lymphatic endothelial cell proliferative rate and lymphatic tube formation ability and was shown to promote lymphatic metastasis of liver cancer cells by increasing the secretion of MMP-9, MMP-2, and VEGF-C.58

Immune regulation

In HCC, exosomes are closely associated with the tumor immune microenvironment in addition to their powerful ability to regulate tumor metastasis. The inherent immune tolerance properties of normal liver and the loss of immune surveillance function in the TME of HCC are key reasons for the high malignancy and low survival rate of HCC. Liver cancer cells reshape the TME through various mechanisms to evade immune surveillance and eventually promote tumor proliferation and metastasis. This tumor cell immune escape pathway can be achieved either by exosomes to activate a specific protumor immune response or by direct immune suppression (Table 2).66–76

Table 2

Biological roles of HCC-related exosomes among immune cells

MolecularTypeSourceRecipient cellType of functionMechanismRef
14-3-3ζProteinHepatoma cellsT cellsTregsNot mentioned66
HMGB1ProteinHepatoma cellsB cellsBregsActivate TLR-MAPK pathway67
miR-23a-3pmiRNAHepatoma cellsMacrophageTAMsInhibit PTEN expression and active Akt68
miR-146a-5pmiRNAHepatoma cellsMacrophageTAMsActivate NF-κB signaling69
TUC339lncRNAHepatoma cellsMacrophageTAMsNot mentioned70
miR-92a-2-5pmiRNAMacrophageHepatoma cellsTAMsSuppress the PHLPP/p-Akt/β-catenin axis71
αMβ2-integrinProteinmacrophageHepatoma cellsTAMsActivate the MMP-9 signaling pathway72
miR-125a/bmiRNAmacrophageHepatoma cellsTAMsDecrease CD90 expression73
CXCL5ProteinHepatoma cellsNeutrophilsTANsNot mentioned74
circUHRF1circRNAHepatoma cellsNK cellImmunosuppressionDecrease the expression of mir-449c-5p inhibit IFN- γ and TNF- α secretion76
miR-92bmiRNAHepatoma cellsNK cellSuppress cytotoxicityDownregulate CD6975

The protumor immune response is the activation and promotion of regulatory T cell (Treg) function by exosomes derived from HCC cells. Tregs also block antitumor immune responses, resulting in immunosuppression. The exosome 14-3-3ζ protein is secreted by HCC cells that is taken up by tumor-infiltrating T lymphocytes (TILs), resulting in a shift in the direction of primary T cell differentiation from effector T cells to Tregs. Tregs suppress excessive immune responses by expressing CTLA4 and secreting IL-10 and TGF-β, and this immunosuppressive property coincides with the promotion of tumor cell immune escape.66

B cells can also be activated by internalization of tumor-derived exosomes. Regulatory B cells (also known as Bregs) accumulate in the tumor environment to express IL-10 in large numbers, and thus immunosuppression of tumors occurs. The HCC-derived exosome HMGB1 activates the TLR-MAPK pathway in B cells, promotes TIM-1(+) B cell expansion, suppresses CD8(+) T cell activity, and increases the expression of the immunosuppressive cytokine IL-10.67

In addition to Tregs, tumor cell-derived exosomes also stimulate the differentiation of tumor-associated macrophages (TAMs) toward the M2 phenotype. As an important component of the tumor stroma, M2-type TAMs induce immunosuppression and promote tumor cell growth, metastasis, tumor angiogenesis, and stabilization. HCC cells can release exosomes under conditions of endoplasmic reticulum stress. Some of these exosomes are taken up by TAMs and contribute to macrophage M2 polarization through different pathways. For example, exosomal miR-23a-3p increases the expression of PD-L1 and inflammatory cytokines by inhibiting PTEN expression and Akt, thereby inducing the conversion of macrophages to the M2 type.68 Exosomal miR-146a-5p remodels macrophages by activating NF-κB signaling and inducing proinflammatory factors, leading to M2-polarized TAMs.69 Lastly, HCC-derived exosomal lncRNA-TUC339 targets macrophages near tumors in the environment and promotes macrophage activation and M2 polarization.70 Simultaneously, exosomes derived from M2-type TAMs also accelerated the progression of HCC. Macrophage secretion of exosomal miR-92a-2-5p transferred to HCC cells targets the androgen receptor, inhibits androgen receptor translation, alters the PHLPP/p-Akt/β-catenin signaling pathway, and increases the invasiveness of HCC cells.71 Exosome-mediated transfer of functional CD11b/CD18 proteins from TAMs to tumor cells may contribute to the migration potential of HCC cells.72 TAM exosomes with low levels of miR-125a/b may promote HCC cell growth and stem cell properties.73 The discovery of a new communication mechanism between TAMs and HCC cells provides a new target to treat HCC.

Similar to macrophages, tumor-associated neutrophils exert protumorigenic effects in the TME. HCC-derived exosomes promote neutrophils to undergo pretumorigenic N2 polarization. TGF-β-positive HCC cells increased the secretion of exosomal CXCL5, inducing the infiltration of N2 neutrophils and further stimulating the proliferation of HCC cells.74

HCC cells release exosomes carrying multiple antigens for presentation to dendritic cells (DCs). Using liver cancer cell exosome pulses to stimulate DCs resulted in the proliferation of DCs, an increased number of T lymphocytes at the tumor site, increased levels of IFN-γ, and decreased levels of IL-10 and TGF-β, achieving tumor growth inhibition.77

NKG2D is an activating receptor expressed mainly on the surface of natural killer cells and plays an important role in cancer immunosurveillance. Exosomes secreted by HCC cells can induce downregulation of NKG2D on the surface of natural killer cells, leading to impaired cytotoxic function and favoring immune escape and progression of HCC.78 Exosomal miR-92b produced by HCC cells enhances the metastatic ability of HCC by inhibiting CD69 on natural killer cells.75 The expression of circUHRF1 was higher in HCC cell tissues than in paraneoplastic tissues. Exosomal circUHRF1 secreted by HCC cells inhibits natural killer cell secretion of IFN-γ and TNF-α, leading to natural killer cell dysfunction. Degradation of miR-449c-5p upregulates TIM-3 expression to inhibit natural killer cell function, driving resistance to anti-PD1 immunotherapy in HCC patients.76

Potential of exosomes as biomarkers for HCC

Biomarkers are a class of indicators found in blood, body fluids, and tissues that can reflect physiological processes, pathological processes, or therapeutic interventions by drugs. Biomarkers are widely used in disease screening, diagnosis, prognosis, and treatment monitoring. Due to the lack of early symptoms of HCC, the low sensitivity and specificity of existing laboratory tests, such as AFP for HCC screening,79 and the difficulty in detecting early tumors by imaging, HCC, as a tumor with a high degree of malignancy, rapid progression and poor prognosis, patients often miss the optimal treatment period before diagnosis. Exosomes are widely found in blood, urine, saliva and other body fluids. The ease of extraction and the large amounts extracted suggest that exosomes are suitable as a noninvasive biomarker for cancer detection. The level of molecules contained in exosomes often varies among different tumors, and this variation is more pronounced when compared to that in healthy people. This difference can also be found in different stages of development of the same tumor disease. In addition, the environment inside the exosome is relatively simple and stable compared to the complex conditions of tissues and cells, and the exosome can deliver various biological effector molecules to the desired target through the blood.80 With the rapid development of research at the exosomal molecular level, diagnostic applications of exosomes in HCC have an optimistic future. This review summarizes the various exosomes as relevant biological markers in HCC (Table 3).30,37,75,81–99

Table 3

Exosomes as a biological marker for HCC

BiomarkerTypeBiomarker applicationsFunction typeRef
miR-21↑miRNASignificantly and positively correlated with tumor stageDiagnosis81
miR-93↑miRNASignificantly correlated with HCC tumor stage, size, and patient OSDiagnosis
Prognosis
82
miR-665↑miRNAOverexpression is associated with short survivalDiagnosis
Prognosis
83
miR-92b ↑miRNAPredictor of HCC recurrenceMonitoring75
miR-718↓miRNASuppresses cell proliferation, predictor of HCC recurrenceMonitoring84
miR-122↓miRNAEvaluation of treatment effect indicatorsPredictive85
miR-638↓miRNAPredicting OSPrognosis86
miR-125b↓miRNAPrognostic biomarker for HCCPrognosis87
miR-9-3p↓miRNAContribute to early HCC detection and diagnosisScreening88
miR-10b-5p↑miRNAPotential biomarker for early-stage HCCScreening89
lncRNA-HEIH↑lncRNAPotential biomarker for early-stage HCCScreening90
lnc-FAM72D-3↑
lnc-EPC1-4↓
lncRNAPotential biomarkers for HCC diagnosisDiagnosis91
LINC00161↑lncRNAPromote tumor migration and invasionDiagnosis
Prognosis
92
ENSG00000258332.1↑
LINC000635↑
lncRNAElevation related to metastasis and worse OSPrognosis93
miR-21↑
lncRNA-ATB↑
lncRNAFaster progress and shorter OS of HCCPrognosis94
lncRNA-FAL1↑lncRNAPromote proliferation and migrationPrognosis30
ENSG00000248932.1↑
ENST00000440688.1↑
ENST00000457302.2↑
lncRNADiagnosis of HCC and dynamic monitoring of HCC metastasisDiagnosis
Monitoring
95
circPTGR1↑circRNAPositively correlated with tumor stage, indicating a poor prognosisPrognosis37
mRNA-hnRNPH1↑mRNADiagnosis of HCC, Child-Pugh classification, metastasis, TNM stage and OSDiagnosis
Prognosis
96
LG3BP↑
PIGR↑
proteinDiagnosis between intrahepatic CCA and HCCDiagnosis97
CAP1proteinMonitoring metastasis and recurrence of liver cancerMonitoring98
miR-140-3p↓
miR-30d-5p↓
miR-29b-3p↓
miRNABiomarkers for predicting HCC cell migration and prognosisPrognosis99

Due to the widespread presence of miRNAs in exosomes that are stable and difficult to degrade, miRNAs are most likely to be potential HCC biomarkers. The literature shows that serum exosome miR-21 levels are significantly higher in patients with HCC than in patients with chronic hepatitis (CH) B and liver cirrhosis and that elevated serum exosome miR-21 levels are positively correlated with tumor stage. In addition, the sensitivity of the serum miR-21 level assay was much lower than that of serum exosomal miR-21.81 Therefore, serum exosomal miR-21 can be used as a potential biomarker for the diagnosis of HCC. The levels of serum exosomal miR-9382 and miRNA-66583 were significantly higher in patients with HCC than in healthy subjects, suggesting a positive correlation with tumor size, clinical stage, local invasion and metastasis. In addition, overexpression of exosomal miR-93 and miRNA-665 uniformly showed shorter survival times in patients with HCC, suggesting that serum exosomal miRNAs can be used both for diagnosis and as an independent indicator of liver cancer prognosis.

Some exosomal miRNAs can be used for postoperative monitoring for HCC recurrence due to significant differences in expression in patients with tumor recurrence. Serum exosomal miR-92b was significantly elevated in patients with HCC. The level of miR-92b will decrease after living donor liver transplantation. If miR-92b is maintained at a higher level at 1 month after living donor liver transplantation, posttransplant HCC recurrence has occurred. Therefore, miR-92b has great potential as a predictor of HCC recurrence.75 Exosomal miR-718 can also be used as a monitoring indicator of liver cancer recurrence posttransplantation. Decreased serum exosomal miR-718 in patients after liver transplantation often indicates liver cancer recurrence. HOXB8 is a target gene of miR-718, as has been shown in HCC patients;84 suppression of miR-718 resulted in upregulation of HOXB8 expression and a poor prognosis for HCC patients. A study confirmed that miR-122 after/before transarterial chemoembolization (commonly referred to as TACE) (miR-122 ratio) in liver cirrhosis patients was significantly associated with patient prognosis. The higher the miR-122 ratio, the longer the survival of the patient. Alterations in exosomal miR-122 levels may represent a predictive biomarker for cirrhotic patients treated with TACE.85 Some exosomal miRNAs often help predict disease outcomes before treatment. Low expression of miR-638 in serum exosomes of patients with HCC before treatment usually indicates a short overall survival (OS).86 Due to the stable presence of exosomal miRNAs in the blood, exosomal diagnostic markers have an advantage over even the classical serum marker AFP. Several studies have confirmed that the sensitivity and specificity of exosomal miR-125b,87 miR-9-3p,88 and miR-10b-5p89 for the diagnosis of HCC patients are significantly better than those of conventional serum AFP.

After exosomal miRNAs, a number of exosomal lncRNAs have been found to have potential value as biological markers. The expression of lncRNA-HEIH was significantly increased in hepatitis C virus-associated HCC compared with CH C patients,90 suggesting that indicators such as exosomal lncRNA-HEIH and serum exosome ratio are better biomarkers for early screening of HCC. Lnc-FAM72D-3 was highly expressed in HCC, and in contrast, lnc-EPC1-4 functioned as an oncogene repressor. Statistical analysis revealed significant differences in the expression of lnc-FAM72D-3 and lnc-EPC1-4 in HCC development, which may help identify potential diagnostic biomarkers for HCC.91 A series of studies found that serum exosomes LINC00161,92 ENSG00000258332.1, LINC000635,93 lncRNA-ATB,94 and lncRNA-FAL130 were significantly elevated in HCC patients compared with CH patients. The expression of these exosomal molecules was negatively correlated with patient OS. Therefore, future studies of exosomal lncRNAs as independent biomarkers for the diagnosis and prognosis of HCC are warranted. The expression of ENSG0000248932.1, ENST0000440688.1 and ENST0000457302.2 was higher in HCC than in CH patients and cancer-free controls. The three lncRNAs combined with AFP values had higher predictive sensitivity and specificity for the development of HCC and metastasis of HCC.95 Therefore, an increasing number of recent studies prefer to combine several exosomes or even traditional serum diagnostic markers to improve the accuracy and sensitivity of the diagnosis.

In recent years, an increasing number of studies have shown that exosomal circRNAs, mRNAs, DNA, and proteins released into serum play an important role in the development and subsequent treatment of HCC and have also been used as molecular markers for the early diagnosis, therapeutic evaluation, and prognosis of HCC. Serum expression of exosomal circPTGR1 was significantly increased in HCC patients and positively correlated with tumor stage, indicating a poor prognosis.37 The combination of exosomal mRNA-hnRNPH1 and AFP further improves the differentiation of HCC patients in Child-Pugh staging, portal vein tumor emboli, lymph node metastasis, TNM staging, and OS.96 Exosomal proteins may be used in the differential diagnosis of liver cancer and related diseases. In HCC, both exosomal proteins LG3BP and PIGR showed higher diagnostic capacity than AFP, and the AUG values of serum exosomal LG3BP (AUG, 0.904) and PIGR (AUG, 0.837) were higher than those of serum AFP(AUG,0.802). In addition, elevated exosomal LG3BP is significantly different in patients with cholangiocarcinoma and HCC and can be used to differentiate HCC from related diseases.97 In addition, a study used protein profiling to identify 129 proteins present in HCC exosomes, many of which are significantly differentially expressed in different phenotypes associated with HCC. Among them, adenylate cyclase-associated protein 1 (also known as CAP1) is widely present in the exosomes of HCC cells. HCC cells with high metastatic capacity produce exosomal CAP1 with significantly increased expression, so investigators believe that exosomal CAP1 may predict metastasis and recurrence of HCC.98

In summary, as an important part of "liquid biopsy," exosomes have great application prospects in the precise diagnosis and treatment of diseases. Exosomes are carriers of macromolecular substances and play an important physiological role in the process of information exchange and signal transduction in cells of the body. The advantages of high stability, rich content, noninvasiveness and rapid detection make EVs promising as novel circulating biomarkers with potential applications for clinical disease adjuvant diagnosis. In cancer diagnosis, the application of exosome biomarkers requires high sensitivity and specificity. Many exosomal biomarkers with extracellular miRNAs or proteins are considered potential biomarkers, but these candidates are not as sensitive and specific as classical serum biomarkers and most of them cannot predict prognosis. Marker development has the qualities of a long development cycle and a low success rate. If we can obtain a large number of potential exosome markers by using advanced high-throughput technology screening, learn from the experience of existing marker development, improve the reproducibility of exosome marker research results, and establish a laboratory quality management system for exosome markers, we will effectively improve the diagnostic accuracy and greatly promote the efficiency of clinical translation of exosome diagnostic markers.

Exosome involvement in drug resistance in liver cancer

Sorafenib is a first-line targeted drug for the treatment of HCC and is effective in prolonging the survival of patients with advanced HCC. However, HCC is highly resistant to chemotherapy, which poses a great challenge to the pharmacological treatment of liver cancer. In two ways, exosomes are involved in the study of drug resistance in HCC. Exosomes released from tumor cells can help cells excrete cytotoxic drugs and thus participate in the inhibition of apoptosis; drug-sensitive cells can also develop drug resistance by absorbing exosomes from drug-resistant cells.

First, exosomes produced by HCC cells can activate the HGF/c-Met/Akt signaling pathway in hepatocytes, inhibiting sorafenib-induced apoptosis, thereby leading to drug resistance.100 The chemotherapeutic drug sorafenib increases exosomal linc-ROR expression in HCC cells. TGF-β selectively enriches exosomal linc-ROR and inhibits p53 expression, thereby reducing apoptosis and decreasing the sensitivity of HCC cells to sorafenib. These findings implicate extracellular vesicular lncRNA as a mediator of the chemotherapeutic response and support targeting linc-ROR to improve chemosensitivity in HCC.101 Exosome circRNA-SORE is transported between HCC cells and plays an important role in sorafenib resistance by binding to the oncogenic protein YBX1 and preventing YBX1 degradation.102 Second, specific pumping of anticancer drugs from tumor cells also contributes to multidrug resistance. Expression of exosomal linc-VLDLR was increased in HCC cells in response to sorafenib. Uptake of exosomal linc-VLDLR by neighboring cells increased the expression of ABCG2. This protein is a member of the ATP-binding cassette (also known as ABC) transporter superfamily, which is involved in drug export and can lead to specific excretion of chemotherapeutic drugs and reduced sorafenib-induced cell death in HCC cells.103 These findings provide new insights into the role of EVs and the lncRNA-mediated chemostress response during chemotherapeutic drug treatment in HCC and could be a target for HCC resistance studies.

Prospects of exosomes as a treatment for liver cancer

Some cell-to-cell transmissions of exosomes exert tumor-suppressive effects. Many studies have found that exosomes exhibit more potent tumor-suppressive effects than cellular lysates, and exosomes are even used as biovehicles in clinical cancer treatment, including liver cancer. In response to the role and mechanism of exosomes in tumor cells, several strategies for exosome involvement in the treatment of HCC are described below, and the potential value and practical value of exosome treatment for HCC are discussed.

Such applications of exosomes as novel drug delivery vehicles have been extensively investigated. MiR-122 expression in HCC cells inhibits tumor cell growth, invasion, and tumor formation and can make these cells sensitive to chemotherapeutic agents, such as adriamycin and sorafenib.104 Application of the miR-122 plasmid transfected with AMSCs for 48 h resulted in the production of large amounts of exosomal miR-122. Intratumor injection of exosomal miR-122 significantly enhanced the sensitivity of HCC cells to sorafenib.61 A study conducted in rats found that the proliferation, migration and metastasis of HCC cells were significantly inhibited after tail vein injection of miR-320a-containing exosomes. The confirmation of in vivo and in vitro experiments increases the prospect of using exosomal miR-320a for the treatment of HCC.34 MiR-335-5p inhibits the growth and invasion of HCC cells in both ex vivo and in vivo experiments. In one study, the authors injected exosomes containing miR-335-5p into HCC tumors and found that such an approach induced tumor growth arrest.105 Intratumor injection of exosomes is similar to TACE and is a safe and effective drug delivery model along with complete intravenous administration. Exosomes have many advantages as novel carriers of therapeutic drugs; for example, they are stable, bypassing the hepatic immune environment and remaining stable in the circulatory system, they can penetrate tissue membranes and even the blood-brain barrier (BBB), and they have better targeting and thus higher efficacy.

Several other studies have found that secretion of miRNA-carrying exosomes by HCC cells can promote tumor progression. They designed a nanoparticle containing small interfering RNA to downregulate sphingosine kinase 2 (also known as Sphk2). Nanoparticle-induced Sphk2 gene silencing in HCC cells could reduce the secretion of exosomal miRNA-21, thus contributing to the inhibition of tumor cell migration and the tumorigenic function of exosomes on normal hepatocytes.106 Melatonin is a well-known hormone with certain cytotoxic and immunomodulatory effects that inhibit tumor function. The application of melatonin-treated HCC cell-derived exosomes (termed in that study as Exo-MT) downregulated the expression of PD-L1 and attenuated the secretion of inflammatory cytokines, such as IL-6, IL-10, IL-1β, and TNF-α. These findings provide a new avenue by which to study the altered immunosuppressive state of macrophages.107 Vps4 is a key regulator in exosome genesis and sorting. Vps4A selectively encapsulates oncogenic miR-27b-3p and miR-92a-3p into exosomes, secretes them out of cells, and accumulates oncogenic miR-193a-3p, miR320a and miR-132-3p in HCC cells. Experiments have confirmed that overexpression of Vps4A leads to inactivation of the PI3K-Akt pathway and thus inhibits cell growth, migration and invasion.108 The design of therapeutic drugs for HCC from the perspective of exosome synthesis, sorting and uptake mechanisms is also a valuable research direction.

Dendritic cell-derived exosomes (Dex) has shown comparable efficacy to mature DCs in stimulating antigen-specific T cell activation in vivo, and therefore many studies have identified Dex as the most promising vaccine candidate for tumor-associated exosomes. Research on Dex tumor vaccines has developed rapidly in recent years and the first generation of therapeutic vaccines designed and developed using Dex have shown good tumor suppression and biosafety in mouse models, as well as low adverse effects.109 Even this vaccine has been used in clinical trials in patients with advanced non-small cell lung cancer.110 In addition to Dex, the researchers used ascites from colorectal cancer patients to isolate and extract exosomes for clinical trials of immunotherapy with autologous-derived exosomes. The researchers found that some patients showed a significant increase in the activity of natural killer cells in their bodies after treatment, suggesting the feasibility of special cell-derived exosomes modified as immunotherapeutic agents.111 The application of exosomes to liver cancer tumor vaccines holds great promise for future research.

Conclusions, questions and future prospects

Exosomes are widely distributed in the body and carry various secretory cell-derived bioinformatically-predicted molecules, which can be circulating markers with clinical diagnostic value. Compared with histopathological examination, blood and fluid-based exosomal assays are highly acceptable to patients, easily monitored, and more reflective of the overall disease state. Compared to traditional serum-free nucleic acid and protein markers, exosomes have the advantages of significant targeting, encapsulation of a larger amount of information, easy preservation, and low interference from the test matrix, making them a highly promising biomarker for rapid research development. Today, exosome-based diagnostic reagents have moved from the laboratory to the clinic, and urine exosome-based diagnostic kits from Exosome Diagnostics Company (Waltham, the United States) have greatly improved the efficacy of multicenter differential diagnosis of prostate cancer from benign lesions.112

The clinical application of exosomal markers still has many problems to be solved. First, a rapid, simple, stable, high-recovery and clinically-operable purification method for clinical exosome specimens still needs to be further explored. In addition, because almost all cells in the body can secrete exosomes, it is important to screen for tissue-specific exosome markers or to isolate and identify exosomes of tissue-specific origin. Research on exosomes as biological markers is still emerging, and there are still many issues that need further resolution.

Reviewing the 35-year history of exosome research, our understanding of exosomes has increased rapidly. Exosomes have a broad impact on each step of the biological process of tumor progression and metastasis. Studies related to exosomes in HCC are even more evident in the following aspects: 1. Exosomes carry various biofunctional cytokines to nearby tumor cells, share information about their malignant proliferation, and induce changes in recipient cells, such as proliferation, inhibition of apoptosis, EMT, invasion or drug resistance; 2. Inducing the formation of EMT and CAFs contributes to the establishment of the TME, attracts multiple inflammatory factors and secretes numerous soluble products to promote tumor cell invasion and metastasis; 3. Inducing immunosuppression by activating specific types of immune cells (TAMs, Tregs, etc.) to inhibit the body's recognition and attack of tumor cells; 4. Endothelial cell proliferation and neovascularization are promoted by carrying metastatic, soluble E-cadherin, DLL4 or miRNAs5, eliminating tight junctions of vascular endothelial cells by carrying relevant miRNAs, leading to tumor progression and metastasis; 6. Excretion of intracellular toxic drugs through the exosomal pathway, leading to tumor cell drug resistance; and 7. Use of exosomes to alter the microenvironment of distant organ locations, increasing metastatic cell adhesion capacity and vascular permeability, thus establishing a premetastatic niche in distant organs.

The value of exosomes in the treatment of HCC has broad application prospects. Exosomes, as natural endogenous transport carriers, have the advantages of low toxicity, nonimmunogenicity and good permeability. Precise and effective delivery of the load without activating the innate or acquired immune system prevents patients from acquiring immunity to the delivery vehicle after the first treatment. In addition, stimulation of the antitumor immune response by editing specific antigens on the membrane surface of exosomes provides a new therapeutic strategy for exosomes to be used as immune vaccines against liver cancer in the future. Exosomes produced by erythrocytes, after encapsulation of drugs with anticancer effects and intravenous infusion into the circulatory system, can be selectively enriched in the liver,113 providing unique conditions for drug-targeted therapy for liver cancer. Although the details are not yet fully understood, essentially, nature has designed this mechanism over millions of years to allow efficient and safe exchange of RNA and various proteins between cells, which is a fundamental advantage.

However, there are still many difficulties to overcome in the design of exosomes as mediating therapeutic strategies in clinical cancer treatment, including liver cancer. First, it is difficult to purify a single species of exosomes. Exosomes are a mixture of numerous EVs produced by cells. Only specific types of exosome molecules have therapeutic effects on tumors, while other types of exosomes contain molecular substances that may have no therapeutic effect or may even promote tumor progression. Second, current methods for applying ultracentrifugation to extract exosomes are limited and inefficient. It is important to ensure that the number of exosomes is sufficient to elicit effective tumor therapeutic benefit. Therefore, it is necessary to establish more cost-effective and time-saving isolation and purification methods. Third, the integration of miRNAs or drugs producing therapeutic effects into exosomes remains a challenge. As mentioned above, neither the isolation of exosomes from donor cells overexpressing miRNAs nor the application of electroporation to transfer miRNAs into isolated exosomes meet the needs of clinical applications. More effective methods are needed to improve the efficiency of integration. Although the road to applying exosomes for liver cancer is challenging, the road is not hopeless. We have seen the morning sun at the end of the road, and all we need to do is to walk toward it and embrace it. We believe that exosomes will be widely used in the clinical treatment of liver cancer.

Abbreviations

AFP: 

alpha-fetoprotein

Akt: 

activating protein kinase B

AMSCs: 

adipose tissue-derived mesenchymal stem cells

CAFs: 

cancer-associated fibroblasts

CH: 

chronic hepatitis

CTCs: 

circulating tumor cells

DC: 

dendritic cell

Dex: 

dendritic cell-derived exosomes

ECM: 

extracellular matrix

EMT: 

epithelial to mesenchymal transition

ESCRT: 

endosomal sorting complex required for transport

EVs: 

extracellular vesicles

HCC: 

hepatocellular carcinoma

HSCs: 

hepatic stellate cells

HUVEC: 

human umbilical vein endothelial cells

lncRNA: 

long non-coding RNA

miRNA: 

microRNA

MVBs: 

multivesicular bodies

OS: 

overall survival

ROS: 

reactive oxygen species

TACE: 

transarterial chemoembolization

TAMs: 

tumor-associated macrophages

TMEs: 

tumor microenvironments

TETs: 

Tetmethylcytosine dioxygenases

Treg: 

regulatory T cell

Declarations

Funding

This work was supported by the Hong Kong Scholars Program (Grant No. XJ2020012), the National Natural Science Foundation of China (Grant No. 81902431), the Excellent Youth Project of Natural Science Foundation of Heilongjiang (Grant No. YQ2019H007), the Special Project of China Postdoctoral Science Foundation (Grant No. 2019T120279), the Special Project of Heilongjiang Postdoctoral Science Foundation (Grant No. LBH-TZ1016), the China Postdoctoral Science Foundation (Grant Nos. 2018M641849 and 2018M640311), and the Heilongjiang Postdoctoral Science Foundation (Grant Nos. LBH-Z18107 and LBH-Z18112).

Conflict of interest

The authors have no conflict of interests related to this publication.

Authors’ contributions

All authors contributed to the study conception and design. Conception of the study (YC, YX), performed the literature search and data analysis (HW), and drafted and/or critically revised the work (LY, PH, YZ, WZ, NM, RH). The first draft of the manuscript was written by Hang Wang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394-424 View Article PubMed/NCBI
  2. Zhang X, Xu Y, Qian Z, Zheng W, Wu Q, Chen Y, et al. circRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma. Cell Death Dis 2018;9(11):1091 View Article PubMed/NCBI
  3. Zhu Q, Li N, Zeng X, Han Q, Li F, Yang C, et al. Hepatocellular carcinoma in a large medical center of China over a 10-year period: evolving therapeutic option and improving survival. Oncotarget 2015;6(6):4440-4450 View Article PubMed/NCBI
  4. Jemal A, Ward EM, Johnson CJ, Cronin KA, Ma J, Ryerson B, et al. Annual report to the nation on the status of cancer, 1975-2014, featuring survival. J Natl Cancer Inst 2017;109(9):djx030 View Article PubMed/NCBI
  5. Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 1983;97(2):329-339 View Article PubMed/NCBI
  6. Kalluri R. The biology and function of exosomes in cancer. J Clin Invest 2016;126(4):1208-1215 View Article PubMed/NCBI
  7. Sohn W, Kim J, Kang SH, Yang SR, Cho JY, Cho HC, et al. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Exp Mol Med 2015;47(9):e184 View Article PubMed/NCBI
  8. Nair S, Tang KD, Kenny L, Punyadeera C. Salivary exosomes as potential biomarkers in cancer. Oral Oncol 2018;84:31-40 View Article PubMed/NCBI
  9. Zhan Y, Du L, Wang L, Jiang X, Zhang S, Li J, et al. Expression signatures of exosomal long non-coding RNAs in urine serve as novel non-invasive biomarkers for diagnosis and recurrence prediction of bladder cancer. Mol Cancer 2018;17(1):142 View Article PubMed/NCBI
  10. Ma B, Jiang H, Jia J, Di L, Song G, Yu J, et al. Murine bone marrow stromal cells pulsed with homologous tumor-derived exosomes inhibit proliferation of liver cancer cells. Clin Transl Oncol 2012;14(10):764-773 View Article PubMed/NCBI
  11. Johnstone RM, Bianchini A, Teng K. Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood 1989;74(5):1844-1851 View Article PubMed/NCBI
  12. Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem 2019;88:487-514 View Article PubMed/NCBI
  13. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996;183(3):1161-1172 View Article PubMed/NCBI
  14. Wang H, Lu Z, Zhao X. Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer. J Hematol Oncol 2019;12(1):133 View Article PubMed/NCBI
  15. Zhang L, Yu D. Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer 2019;1871(2):455-468 View Article PubMed/NCBI
  16. Piper RC, Katzmann DJ. Biogenesis and function of multivesicular bodies. Annu Rev Cell Dev Biol 2007;23:519-547 View Article PubMed/NCBI
  17. Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 2012;21(R1):R125-R134 View Article PubMed/NCBI
  18. French KC, Antonyak MA, Cerione RA. Extracellular vesicle docking at the cellular port: Extracellular vesicle binding and uptake. Semin Cell Dev Biol 2017;67:48-55 View Article PubMed/NCBI
  19. Cossetti C, Iraci N, Mercer TR, Leonardi T, Alpi E, Drago D, et al. Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells. Mol Cell 2014;56(2):193-204 View Article PubMed/NCBI
  20. Svensson KJ, Christianson HC, Wittrup A, Bourseau-Guilmain E, Lindqvist E, Svensson LM, et al. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 2013;288(24):17713-17724 View Article PubMed/NCBI
  21. Mayor S, Parton RG, Donaldson JG. Clathrin-independent pathways of endocytosis. Cold Spring Harb Perspect Biol 2014;6(6):a016758 View Article PubMed/NCBI
  22. Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun 2014;5:3477 View Article PubMed/NCBI
  23. Mittelbrunn M, Vicente Manzanares M, Sánchez-Madrid F. Organizing polarized delivery of exosomes at synapses. Traffic 2015;16(4):327-337 View Article PubMed/NCBI
  24. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013;200(4):373-383 View Article PubMed/NCBI
  25. Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 2019;21(1):9-17 View Article PubMed/NCBI
  26. Babst M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr Opin Cell Biol 2011;23(4):452-457 View Article PubMed/NCBI
  27. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008;319(5867):1244-1247 View Article PubMed/NCBI
  28. Wu H, Fu M, Liu J, Chong W, Fang Z, Du F, et al. The role and application of small extracellular vesicles in gastric cancer. Mol Cancer 2021;20(1):71 View Article PubMed/NCBI
  29. Cao LQ, Yang XW, Chen YB, Zhang DW, Jiang XF, Xue P. Exosomal miR-21 regulates the TETs/PTENp1/PTEN pathway to promote hepatocellular carcinoma growth. Mol Cancer 2019;18(1):148 View Article PubMed/NCBI
  30. Li B, Mao R, Liu C, Zhang W, Tang Y, Guo Z. LncRNA FAL1 promotes cell proliferation and migration by acting as a CeRNA of miR-1236 in hepatocellular carcinoma cells. Life Sci 2018;197:122-129 View Article PubMed/NCBI
  31. Gai X, Tang B, Liu F, Wu Y, Wang F, Jing Y, et al. mTOR/miR-145-regulated exosomal GOLM1 promotes hepatocellular carcinoma through augmented GSK-3β/MMPs. J Genet Genomics 2019;46(5):235-245 View Article PubMed/NCBI
  32. Takahashi K, Yan IK, Haga H, Patel T. Modulation of hypoxia-signaling pathways by extracellular linc-RoR. J Cell Sci 2014;127(Pt 7):1585-1594 View Article PubMed/NCBI
  33. Basu S, Bhattacharyya SN. Insulin-like growth factor-1 prevents miR-122 production in neighbouring cells to curtail its intercellular transfer to ensure proliferation of human hepatoma cells. Nucleic Acids Res 2014;42(11):7170-7185 View Article PubMed/NCBI
  34. Zhang Z, Li X, Sun W, Yue S, Yang J, Li J, et al. Loss of exosomal miR-320a from cancer-associated fibroblasts contributes to HCC proliferation and metastasis. Cancer Lett 2017;397:33-42 View Article PubMed/NCBI
  35. Lin M, Liao W, Dong M, Zhu R, Xiao J, Sun T, et al. Exosomal neutral sphingomyelinase 1 suppresses hepatocellular carcinoma via decreasing the ratio of sphingomyelin/ceramide. FEBS J 2018;285(20):3835-3848 View Article PubMed/NCBI
  36. Chen W, Quan Y, Fan S, Wang H, Liang J, Huang L, et al. Exosome-transmitted circular RNA hsa_circ_0051443 suppresses hepatocellular carcinoma progression. Cancer Lett 2020;475:119-128 View Article PubMed/NCBI
  37. Wang G, Liu W, Zou Y, Wang G, Deng Y, Luo J, et al. Three isoforms of exosomal circPTGR1 promote hepatocellular carcinoma metastasis via the miR449a-MET pathway. EBioMedicine 2019;40:432-445 View Article PubMed/NCBI
  38. Cheng Z, Lei Z, Yang P, Si A, Xiang D, Tang X, et al. Exosome-transmitted p120-catenin suppresses hepatocellular carcinoma progression via STAT3 pathways. Mol Carcinog 2019;58(8):1389-1399 View Article PubMed/NCBI
  39. Zhu C, Su Y, Liu L, Wang S, Liu Y, Wu J. Circular RNA hsa_circ_0004277 stimulates malignant phenotype of hepatocellular carcinoma and epithelial-mesenchymal transition of peripheral cells. Front Cell Dev Biol 2021;8:585565 View Article PubMed/NCBI
  40. Liu D, Kang H, Gao M, Jin L, Zhang F, Chen D, et al. Exosome-transmitted circ_MMP2 promotes hepatocellular carcinoma metastasis by upregulating MMP2. Mol Oncol 2020;14(6):1365-1380 View Article PubMed/NCBI
  41. Fu X, Liu M, Qu S, Ma J, Zhang Y, Shi T, et al. Exosomal microRNA-32-5p induces multidrug resistance in hepatocellular carcinoma via the PI3K/Akt pathway. J Exp Clin Cancer Res 2018;37(1):52 View Article PubMed/NCBI
  42. Fu Q, Zhang Q, Lou Y, Yang J, Nie G, Chen Q, et al. Primary tumor-derived exosomes facilitate metastasis by regulating adhesion of circulating tumor cells via SMAD3 in liver cancer. Oncogene 2018;37(47):6105-6118 View Article PubMed/NCBI
  43. Li R, Wang Y, Zhang X, Feng M, Ma J, Li J, et al. Exosome-mediated secretion of LOXL4 promotes hepatocellular carcinoma cell invasion and metastasis. Mol Cancer 2019;18(1):18 View Article PubMed/NCBI
  44. Sun H, Wang C, Hu B, Gao X, Zou T, Luo Q, et al. Exosomal S100A4 derived from highly metastatic hepatocellular carcinoma cells promotes metastasis by activating STAT3. Signal Transduct Target Ther 2021;6(1):187 View Article PubMed/NCBI
  45. Fang JH, Zhang ZJ, Shang LR, Luo YW, Lin YF, Yuan Y, et al. Hepatoma cell-secreted exosomal microRNA-103 increases vascular permeability and promotes metastasis by targeting junction proteins. Hepatology 2018;68(4):1459-1475 View Article PubMed/NCBI
  46. Liu H, Chen W, Zhi X, Chen EJ, Wei T, Zhang J, et al. Tumor-derived exosomes promote tumor self-seeding in hepatocellular carcinoma by transferring miRNA-25-5p to enhance cell motility. Oncogene 2018;37(36):4964-4978 View Article PubMed/NCBI
  47. Huang XY, Huang ZL, Huang J, Xu B, Huang XY, Xu YH, et al. Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J Exp Clin Cancer Res 2020;39(1):20 View Article PubMed/NCBI
  48. Fang T, Lv H, Lv G, Li T, Wang C, Han Q, et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun 2018;9(1):191 View Article PubMed/NCBI
  49. Zhou Y, Ren H, Dai B, Li J, Shang L, Huang J, et al. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J Exp Clin Cancer Res 2018;37(1):324 View Article PubMed/NCBI
  50. Lin XJ, Fang JH, Yang XJ, Zhang C, Yuan Y, Zheng L, et al. Hepatocellular carcinoma cell-secreted exosomal microRNA-210 promotes angiogenesis in vitro and in vivo. Mol Ther Nucleic Acids 2018;11:243-252 View Article PubMed/NCBI
  51. Matsuura Y, Wada H, Eguchi H, Gotoh K, Kobayashi S, Kinoshita M, et al. Exosomal miR-155 derived from hepatocellular carcinoma cells under hypoxia promotes angiogenesis in endothelial cells. Dig Dis Sci 2019;64(3):792-802 View Article PubMed/NCBI
  52. Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer 2015;14:155 View Article PubMed/NCBI
  53. Yukawa H, Suzuki K, Aoki K, Arimoto T, Yasui T, Kaji N, et al. Imaging of angiogenesis of human umbilical vein endothelial cells by uptake of exosomes secreted from hepatocellular carcinoma cells. Sci Rep 2018;8(1):6765 View Article PubMed/NCBI
  54. Huang A, Dong J, Li S, Wang C, Ding H, Li H, et al. Exosomal transfer of vasorin expressed in hepatocellular carcinoma cells promotes migration of human umbilical vein endothelial cells. Int J Biol Sci 2015;11(8):961-969 View Article PubMed/NCBI
  55. Dai W, Wang Y, Yang T, Wang J, Wu W, Gu J. Downregulation of exosomal CLEC3B in hepatocellular carcinoma promotes metastasis and angiogenesis via AMPK and VEGF signals. Cell Commun Signal 2019;17(1):113 View Article PubMed/NCBI
  56. Xie JY, Wei JX, Lv LH, Han QF, Yang WB, Li GL, et al. Angiopoietin-2 induces angiogenesis via exosomes in human hepatocellular carcinoma. Cell Commun Signal 2020;18(1):46 View Article PubMed/NCBI
  57. Moh-Moh-Aung A, Fujisawa M, Ito S, Katayama H, Ohara T, Ota Y, et al. Decreased miR-200b-3p in cancer cells leads to angiogenesis in HCC by enhancing endothelial ERG expression. Sci Rep 2020;10(1):10418 View Article PubMed/NCBI
  58. Li M, Lu Y, Xu Y, Wang J, Zhang C, Du Y, et al. Horizontal transfer of exosomal CXCR4 promotes murine hepatocarcinoma cell migration, invasion and lymphangiogenesis. Gene 2018;676:101-109 View Article PubMed/NCBI
  59. Wang S, Xu M, Li X, Su X, Xiao X, Keating A, et al. Exosomes released by hepatocarcinoma cells endow adipocytes with tumor-promoting properties. J Hematol Oncol 2018;11(1):82 View Article PubMed/NCBI
  60. Zhang H, Deng T, Ge S, Liu Y, Bai M, Zhu K, et al. Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7. Oncogene 2019;38(15):2844-2859 View Article PubMed/NCBI
  61. Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol 2015;8:122 View Article PubMed/NCBI
  62. Greening DW, Gopal SK, Mathias RA, Liu L, Sheng J, Zhu HJ, et al. Emerging roles of exosomes during epithelial-mesenchymal transition and cancer progression. Semin Cell Dev Biol 2015;40:60-71 View Article PubMed/NCBI
  63. Campbell K. Contribution of epithelial-mesenchymal transitions to organogenesis and cancer metastasis. Curr Opin Cell Biol 2018;55:30-35 View Article PubMed/NCBI
  64. Han Q, Lv L, Wei J, Lei X, Lin H, Li G, et al. Vps4A mediates the localization and exosome release of β-catenin to inhibit epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett 2019;457:47-59 View Article PubMed/NCBI
  65. Ludwig N, Whiteside TL. Potential roles of tumor-derived exosomes in angiogenesis. Expert Opin Ther Targets 2018;22(5):409-417 View Article PubMed/NCBI
  66. Wang X, Shen H, Zhangyuan G, Huang R, Zhang W, He Q, et al. 14-3-3ζ delivered by hepatocellular carcinoma-derived exosomes impaired anti-tumor function of tumor-infiltrating T lymphocytes. Cell Death Dis 2018;9(2):159 View Article PubMed/NCBI
  67. Ye L, Zhang Q, Cheng Y, Chen X, Wang G, Shi M, et al. Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1+ regulatory B cell expansion. J Immunother Cancer 2018;6(1):145 View Article PubMed/NCBI
  68. Liu J, Fan L, Yu H, Zhang J, He Y, Feng D, et al. Endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and up-regulate programmed death ligand 1 expression in macrophages. Hepatology 2019;70(1):241-258 View Article PubMed/NCBI
  69. Yin C, Han Q, Xu D, Zheng B, Zhao X, Zhang J. SALL4-mediated upregulation of exosomal miR-146a-5p drives T-cell exhaustion by M2 tumor-associated macrophages in HCC. Oncoimmunology 2019;8(7):1601479 View Article PubMed/NCBI
  70. Li X, Lei Y, Wu M, Li N. Regulation of macrophage activation and polarization by HCC-derived exosomal lncRNA TUC339. Int J Mol Sci 2018;19(10):2958 View Article PubMed/NCBI
  71. Liu G, Ouyang X, Sun Y, Xiao Y, You B, Gao Y, et al. The miR-92a-2-5p in exosomes from macrophages increases liver cancer cells invasion via altering the AR/PHLPP/p-AKT/β-catenin signaling. Cell Death Differ 2020;27(12):3258-3272 View Article PubMed/NCBI
  72. Wu J, Gao W, Tang Q, Yu Y, You W, Wu Z, et al. M2 macrophage-derived exosomes facilitate HCC metastasis by transferring αm β2 integrin to tumor cells. Hepatology 2021;73(4):1365-1380 View Article PubMed/NCBI
  73. Wang Y, Wang B, Xiao S, Li Y, Chen Q. miR-125a/b inhibits tumor-associated macrophages mediated in cancer stem cells of hepatocellular carcinoma by targeting CD90. J Cell Biochem 2019;120(3):3046-3055 View Article PubMed/NCBI
  74. Haider C, Hnat J, Wagner R, Huber H, Timelthaler G, Grubinger M, et al. Transforming growth factor-β and Axl induce CXCL5 and neutrophil recruitment in hepatocellular carcinoma. Hepatology 2019;69(1):222-236 View Article PubMed/NCBI
  75. Nakano T, Chen IH, Wang CC, Chen PJ, Tseng HP, Huang KT, et al. Circulating exosomal miR-92b: Its role for cancer immunoediting and clinical value for prediction of posttransplant hepatocellular carcinoma recurrence. Am J Transplant 2019;19(12):3250-3262 View Article PubMed/NCBI
  76. Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ, Shi GM, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer 2020;19(1):110 View Article PubMed/NCBI
  77. Rao Q, Zuo B, Lu Z, Gao X, You A, Wu C, et al. Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro. Hepatology 2016;64(2):456-472 View Article PubMed/NCBI
  78. Ashiru O, Boutet P, Fernández-Messina L, Agüera-González S, Skepper JN, Valés-Gómez M, et al. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res 2010;70(2):481-489 View Article PubMed/NCBI
  79. Shu H, Li W, Shang S, Qin X, Zhang S, Liu Y. Diagnosis of AFP-negative early-stage hepatocellular carcinoma using Fuc-PON1. Discov Med 2017;23(126):163-168 View Article PubMed/NCBI
  80. Kogure T, Lin WL, Yan IK, Braconi C, Patel T. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 2011;54(4):1237-1248 View Article PubMed/NCBI
  81. Wang H, Hou L, Li A, Duan Y, Gao H, Song X. Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma. Biomed Res Int 2014;2014:864894 View Article PubMed/NCBI
  82. Xue X, Wang X, Zhao Y, Hu R, Qin L. Exosomal miR-93 promotes proliferation and invasion in hepatocellular carcinoma by directly inhibiting TIMP2/TP53INP1/CDKN1A. Biochem Biophys Res Commun 2018;502(4):515-521 View Article PubMed/NCBI
  83. Qu Z, Wu J, Wu J, Ji A, Qiang G, Jiang Y, et al. Exosomal miR-665 as a novel minimally invasive biomarker for hepatocellular carcinoma diagnosis and prognosis. Oncotarget 2017;8(46):80666-80678 View Article PubMed/NCBI
  84. Sugimachi K, Matsumura T, Hirata H, Uchi R, Ueda M, Ueo H, et al. Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. Br J Cancer 2015;112(3):532-538 View Article PubMed/NCBI
  85. Suehiro T, Miyaaki H, Kanda Y, Shibata H, Honda T, Ozawa E, et al. Serum exosomal microRNA-122 and microRNA-21 as predictive biomarkers in transarterial chemoembolization-treated hepatocellular carcinoma patients. Oncol Lett 2018;16(3):3267-3273 View Article PubMed/NCBI
  86. Shi M, Jiang Y, Yang L, Yan S, Wang YG, Lu XJ. Decreased levels of serum exosomal miR-638 predict poor prognosis in hepatocellular carcinoma. J Cell Biochem 2018;119(6):4711-4716 View Article PubMed/NCBI
  87. Liu W, Hu J, Zhou K, Chen F, Wang Z, Liao B, et al. Serum exosomal miR-125b is a novel prognostic marker for hepatocellular carcinoma. Onco Targets Ther 2017;10:3843-3851 View Article PubMed/NCBI
  88. Tang J, Li Y, Liu K, Zhu Q, Yang WH, Xiong LK, et al. Exosomal miR-9-3p suppresses HBGF-5 expression and is a functional biomarker in hepatocellular carcinoma. Minerva Med 2018;109(1):15-23 View Article PubMed/NCBI
  89. Cho HJ, Eun JW, Baek GO, Seo CW, Ahn HR, Kim SS, et al. Serum exosomal microRNA, miR-10b-5p, as a potential diagnostic biomarker for early-stage hepatocellular carcinoma. J Clin Med 2020;9(1):281 View Article PubMed/NCBI
  90. Zhang C, Yang X, Qi Q, Gao Y, Wei Q, Han S. lncRNA-HEIH in serum and exosomes as a potential biomarker in the HCV-related hepatocellular carcinoma. Cancer Biomark 2018;21(3):651-659 View Article PubMed/NCBI
  91. Yao Z, Jia C, Tai Y, Liang H, Zhong Z, Xiong Z, et al. Serum exosomal long noncoding RNAs lnc-FAM72D-3 and lnc-EPC1-4 as diagnostic biomarkers for hepatocellular carcinoma. Aging (Albany NY) 2020;12(12):11843-11863 View Article PubMed/NCBI
  92. Sun L, Su Y, Liu X, Xu M, Chen X, Zhu Y, et al. Serum and exosome long non coding RNAs as potential biomarkers for hepatocellular carcinoma. J Cancer 2018;9(15):2631-2639 View Article PubMed/NCBI
  93. Xu H, Chen Y, Dong X, Wang X. Serum exosomal long noncoding RNAs ENSG00000258332.1 and LINC00635 for the diagnosis and prognosis of hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev 2018;27(6):710-716 View Article PubMed/NCBI
  94. Lee YR, Kim G, Tak WY, Jang SY, Kweon YO, Park JG, et al. Circulating exosomal noncoding RNAs as prognostic biomarkers in human hepatocellular carcinoma. Int J Cancer 2019;144(6):1444-1452 View Article PubMed/NCBI
  95. Lu Y, Duan Y, Xu Q, Zhang L, Chen W, Qu Z, et al. Circulating exosome-derived bona fide long non-coding RNAs predicting the occurrence and metastasis of hepatocellular carcinoma. J Cell Mol Med 2020;24(2):1311-1318 View Article PubMed/NCBI
  96. Xu H, Dong X, Chen Y, Wang X. Serum exosomal hnRNPH1 mRNA as a novel marker for hepatocellular carcinoma. Clin Chem Lab Med 2018;56(3):479-484 View Article PubMed/NCBI
  97. Arbelaiz A, Azkargorta M, Krawczyk M, Santos-Laso A, Lapitz A, Perugorria MJ, et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology 2017;66(4):1125-1143 View Article PubMed/NCBI
  98. Wang S, Chen G, Lin X, Xing X, Cai Z, Liu X, et al. Role of exosomes in hepatocellular carcinoma cell mobility alteration. Oncol Lett 2017;14(6):8122-8131 View Article PubMed/NCBI
  99. Yu LX, Zhang BL, Yang Y, Wang MC, Lei GL, Gao Y, et al. Exosomal microRNAs as potential biomarkers for cancer cell migration and prognosis in hepatocellular carcinoma patient-derived cell models. Oncol Rep 2019;41(1):257-269 View Article PubMed/NCBI
  100. Qu Z, Wu J, Wu J, Luo D, Jiang C, Ding Y. Exosomes derived from HCC cells induce sorafenib resistance in hepatocellular carcinoma both in vivo and in vitro. J Exp Clin Cancer Res 2016;35(1):159 View Article PubMed/NCBI
  101. Takahashi K, Yan IK, Kogure T, Haga H, Patel T. Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio 2014;4:458-467 View Article PubMed/NCBI
  102. Xu J, Ji L, Liang Y, Wan Z, Zheng W, Song X, et al. CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduct Target Ther 2020;5(1):298 View Article PubMed/NCBI
  103. Takahashi K, Yan IK, Wood J, Haga H, Patel T. Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy. Mol Cancer Res 2014;12(10):1377-1387 View Article PubMed/NCBI
  104. Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S, et al. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 2009;69(14):5761-5767 View Article PubMed/NCBI
  105. Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology 2018;67(3):940-954 View Article PubMed/NCBI
  106. Liang J, Zhang X, He S, Miao Y, Wu N, Li J, et al. Sphk2 RNAi nanoparticles suppress tumor growth via downregulating cancer cell derived exosomal microRNA. J Control Release 2018;286:348-357 View Article PubMed/NCBI
  107. Cheng L, Liu J, Liu Q, Liu Y, Fan L, Wang F, et al. Exosomes from Melatonin Treated Hepatocellularcarcinoma Cells Alter the Immunosupression Status through STAT3 Pathway in Macrophages. Int J Biol Sci 2017;13(6):723-734 View Article PubMed/NCBI
  108. Wei JX, Lv LH, Wan YL, Cao Y, Li GL, Lin HM, et al. Vps4A functions as a tumor suppressor by regulating the secretion and uptake of exosomal microRNAs in human hepatoma cells. Hepatology 2015;61(4):1284-1294 View Article PubMed/NCBI
  109. Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G, et al. Dendritic cell-derived exosomes for cancer therapy. J Clin Invest 2016;126(4):1224-1232 View Article PubMed/NCBI
  110. Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 2005;3(1):9 View Article PubMed/NCBI
  111. Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther 2008;16(4):782-790 View Article PubMed/NCBI
  112. McKiernan J, Donovan MJ, O'Neill V, Bentink S, Noerholm M, Belzer S, et al. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol 2016;2(7):882-889 View Article PubMed/NCBI
  113. Zhang G, Huang X, Xiu H, Sun Y, Chen J, Cheng G, et al. Extracellular vesicles: Natural liver-accumulating drug delivery vehicles for the treatment of liver diseases. J Extracell Vesicles 2020;10(2):e12030 View Article PubMed/NCBI
  • Journal of Clinical and Translational Hepatology
  • pISSN 2225-0719
  • eISSN 2310-8819
  • Copyright © 2022 JCTH. All Rights Reserved.
  • Published by Xia & He Publishing Inc.
  • Address: 14090 Southwest Freeway, Suite 300, Sugar Land, Texas 77478, USA
  • Email: service@xiahepublishing.com