• OPEN ACCESS

Impaired Pulmonary Function as a Potential Contributor to Reduced Exercise Capacity Associated with MAFLD

  • Derrick Michael Van Rooyen1 and
  • Oyekoya Taiwo Ayonrinde1,2,3,* 
 Author information
Journal of Clinical and Translational Hepatology 2022;10(2):181-183

DOI: 10.14218/JCTH.2022.00103

Abstract

Keywords

For over a century, fatty liver has been associated with inadequate physical activity.1 A sedentary lifestyle has long been considered a major contributor to obesity and fatty liver. People with fatty liver are consequently often deemed to be unwilling or unable to increase their physical activity as a therapeutic lifestyle intervention. Research is ongoing toward identifying obstacles to physical exercise in people with fatty liver, exposing intrinsic and extrinsic factors that may sometimes be bidirectional. Several studies have now reported impaired exercise capacity in individuals with nonalcoholic fatty liver disease (NAFLD) and this has variably been attributed to the severity of nonalcoholic steatohepatitis (NASH), left ventricular diastolic dysfunction, obesity, functional iron deficiency, sarcopenia, and reduced fitness. NAFLD has also been associated with reduced pulmonary function,2 which together with the above-mentioned conditions, could have implications for the capacity and enjoyment of exercise. In 2015, Peng and colleagues3 published an analysis of 9,976 patients from the Third National Health and Nutrition Examination Survey (NHANES III) cohort that demonstrated a relationship between hepatic steatosis and impaired pulmonary function, specifically a restrictive pattern of lung disease.

As the metabolic syndrome and metabolic dysfunction gain prominence in defining the contemporary phenotype and risk associations of fatty liver, the term metabolic dysfunction-associated liver disease (MAFLD) is increasingly adopted. As MAFLD represents hepatic steatosis with nonidentical inclusion and exclusion characteristics compared with NAFLD, it is timely to examine differences in pulmonary function between the two definitions, as part of defining the multisystem reach of fatty liver. In this journal, Miao and colleagues4 recently provided additional insights into the effects of MAFLD on pulmonary function in a large cross-sectional study of adults. In their study, middle-aged Chinese patients with MAFLD and/or NAFLD were found to have significantly lower forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). Adults with MAFLD had more severe impairment of pulmonary function compared with those with NAFLD, particularly when associated with type II diabetes mellitus and/or increased adiposity. Saliently, the severity of pulmonary function impairment correlated with both the degree of obesity and probable liver fibrosis, as assessed using noninvasive FIB-4 scoring. While the exact mechanisms responsible for those changes are yet to be fully elucidated, there are several potential pathways that likely contribute to the impairment in lung function.

Normal lung mechanics are largely determined by pulmonary compliance, which is defined as the change in lung volume per change in the thoracic transmural pressure.5 Changes in thoracic transmural pressure, in turn, are positively affected by the diaphragm, external intercostal, sternocleidomastoid, and scalene muscles, and negatively influenced by factors that impede rib expansion and diaphragmatic excursion. As MAFLD progresses, the liver parenchyma becomes increasingly steatotic, leading to hepatomegaly with higher intrabdominal volume and displacement of the visceral structures, including the abdominal visceral fat compartment. The increased intraabdominal volume causes an increased resistance against diaphragmatic contractions thereby limiting functional residual capacity (Fig. 1).6,7,8 A novel finding by Miao et al.4 is that the severity of liver fibrosis determines the degree of impaired lung function with MAFLD. It is plausible that as liver stiffness increases, the diaphragmatic forces required to displace the liver also increase. When coupled with sarcopenia, which is commonly seen in advanced MAFLD patients,9 these factors will worsen pulmonary function.

Effects of metabolic-associated liver disease (MAFLD), obesity, and liver fibrosis on respiratory function and current therapeutic options.
Fig. 1  Effects of metabolic-associated liver disease (MAFLD), obesity, and liver fibrosis on respiratory function and current therapeutic options.

MAFLD-associated liver fibrosis reduces lung compliance leading to diminished forced vital capacity (FVC) and forced expiratory volume at 1 s (FEV1). Individuals with obesity have smaller tidal volumes. The increased visceral adiposity seen in obese patients, as well as hepatic inflammatory changes in MAFLD lead to high levels of circulating pro-inflammatory cytokines such as interleukins (IL)-1β, IL6 and tumor necrosis factor alpha (TNF-α). Within the airways, these cytokines contribute to inflammatory changes and increased airway hyper-responsiveness, thereby contributing to respiratory morbidity and impaired exercise tolerance (see reference 8). Separate to their anti-hyperglycemic effects glucagon-like peptide-1 receptor (GLP-1R) agonists are capable of directly modulating airway inflammation by acting on lung epithelium and inflammatory cells, thereby increasing FEV1.7 Sodium-glucose cotransporter 2 (SGLT2) inhibitors improve insulin sensitivity, reduce systemic adipose inflammation and pulmonary artery pressure,8 and may improve exercise function.

Patients with MAFLD may by susceptible to airway inflammatory changes and hyperresponsiveness. Obesity and metabolic conditions such as MAFLD cause increases in circulating inflammatory cytokines and chemokines that in turn lead to airway inflammatory changes and hyper-responsiveness (Fig. 1).10 Interestingly, glucagon-like peptide-1 receptors (GLP-1R) agonists and sodium-glucose cotransporter 2 (SGLT2) inhibitors, which are commonly used in the treatment of diabetes in patients with MAFLD, have been found to improve lung function. GLP-1R is expressed on lung epithelial cells as well as pulmonary leukocytes. GLP-1R agonists, such as liraglutide, dulaglutide, and exenatide, are capable of increasing FEV1 and FVC in diabetes patients (Fig. 1).7 In contrast, SGLT2 inhibitors not only improve insulin sensitivity, systemic endothelial function, and reduce systemic inflammation, but also reduce pulmonary artery pressure and potentially improve exercise function.8 As knowledge regarding the pathogenesis and systemic metabolic influences associated with MAFLD increase, there will be a need for improved understanding of the therapeutic consequences of various therapies on pulmonary function in patients with MAFLD.

Overall, the results of the study by Miao and colleagues4 add to increasing observations of impaired pulmonary function associated with fatty liver. Impaired pulmonary function is a plausible additional explanation for reduced exercise capacity in some individuals with MAFLD and reinforces the importance of considering pulmonary impairment as a component of multi-organ impairment with MAFLD, particularly in those with liver fibrosis. This may have implications for understanding obstacles to exercise, as well as for the design of exercise intervention programs for people with MAFLD.

Abbreviations

FEV1: 

forced expiratory volume in 1 s

FVC: 

forced vital capacity

MAFLD: 

metabolic dysfunction-associated fatty liver disease

NAFLD: 

nonalcoholic fatty liver disease

Declarations

Funding

None to declare.

Conflict of interest

OTA has been an editorial board member of Journal of Clinical and Translational Hepatology since 2021. DMvR has no conflict of interests related to this publication.

Authors’ contributions

Manuscript preparation, revision, and approval of final version of submitted manuscript (DMvR, OTA), guarantor of manuscript (OTA).

References

  1. Ayonrinde OT. Historical narrative from fatty liver in the nineteenth century to contemporary NAFLD - Reconciling the present with the past. JHEP Rep 2021;3(3):100261 View Article PubMed/NCBI
  2. Canada JM, Abbate A, Collen R, Billingsley H, Buckley LF, Carbone S, et al. Relation of Hepatic Fibrosis in Nonalcoholic Fatty Liver Disease to Left Ventricular Diastolic Function and Exercise Tolerance. Am J Cardiol 2019;123(3):466-473 View Article PubMed/NCBI
  3. Peng TC, Kao TW, Wu LW, Chen YJ, Chang YW, Wang CC, et al. Association Between Pulmonary Function and Nonalcoholic Fatty Liver Disease in the NHANES III Study. Medicine (Baltimore) 2015;94(21):e907-e907 View Article PubMed/NCBI
  4. Miao L, Yang L, Guo LS, Shi Q, Zhou TF, Chen Y, et al. Metabolic Dysfunction-associated Fatty Liver Disease is Associated with Greater Impairment of Lung Function than Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol 2022;10(2):230-237 View Article PubMed/NCBI
  5. West JB. Respiratory physiology. 9th Edition. Baltimore, MD: Lippincott Williams and Wilkins; 2008 View Article PubMed/NCBI
  6. Pelosi P, Quintel M, Malbrain ML. Effect of intra-abdominal pressure on respiratory mechanics. Acta Clin Belg 2007;62(Suppl 1):78-88 View Article PubMed/NCBI
  7. Rogliani P, Matera MG, Calzetta L, Hanania NA, Page C, Rossi I, et al. Long-term observational study on the impact of GLP-1R agonists on lung function in diabetic patients. Respir Med 2019;154:86-92 View Article PubMed/NCBI
  8. Nassif ME, Windsor SL, Borlaug BA, Kitzman DW, Shah SJ, Tang F, et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial. Nat Med 2021;27(11):1954-1960 View Article PubMed/NCBI
  9. Cespiati A, Meroni M, Lombardi R, Oberti G, Dongiovanni P, Fracanzani AL. Impact of Sarcopenia and Myosteatosis in Non-Cirrhotic Stages of Liver Diseases: Similarities and Differences across Aetiologies and Possible Therapeutic Strategies. Biomedicines 2022;10(1):182 View Article PubMed/NCBI
  10. Dixon AE, Peters U. The effect of obesity on lung function. Expert Rev Respir Med 2018;12(9):755-767 View Article PubMed/NCBI
  • Journal of Clinical and Translational Hepatology
  • pISSN 2225-0719
  • eISSN 2310-8819
  • Copyright © 2022 JCTH. All Rights Reserved.
  • Published by Xia & He Publishing Inc.
  • Address: 14090 Southwest Freeway, Suite 300, Sugar Land, Texas 77478, USA
  • Email: service@xiahepublishing.com